Mystery Solved? Why are there so many beauty quarks produced in hadron colliders?

Mary Bishai

bishai@fnal.gov

Fermi National Accelerator lab

Outline

- General Introduction
- Too Many Beauty Quarks!
- The Theory
- The Accelerator
- The Detector
- A New Measurement
- Conclusions

"Quarks. Neutrinos. Mesons. All those damn particles you can't see. <u>That's</u> what drove me to drink. But now I can see them!"

The Standard Model

It started with "strange"

The birth of the quark model started with the discovery of "strange" particles in cosmic rays circa 1947. Below is an example of a "strange" particle:

The age of accelerators

By colliding particles together, we can create different particles that are unstable and shortlived ($E=mc^2$). These particles decay to stable particles such as protons, electrons, and the <u>long-lived muons</u>, $\pi(\bar{u}d)$ -mesons and Kaons($\bar{u}s$) that were already known from cosmic rays.

Detector basics...

Discovery of the charm quark

In 1974, accelerators at Brookhaven (
proton beam on Be target) and SLAC $(e^+e^- \text{ collisions})$, see a mysterious
bump in the e^+e^- spectrum!

mass --->

Discovery of the J particle at BNL

(co-discovered at SLAC as the ψ)

The saga continues....

In 1977, an expt with proton beams on targets starts collecting data at Fermi National Accelerator Lab. in Illinois:

Discovering Beauty

Fermilab sees a bump at higher energy in the di-muon spectrum

Evidence that yet a third generation exists...

Interaction cross-sections

- The cross-section is a measure of the probability that an interaction will occur.
- The term comes from scattering experiments, where the size of the target (like a proton) determines the interaction probability.
- Particle physics unit of cross-section is a $barn = 10^{-24} \text{ cm}^2$.
- HEP cross-sections are complicated quantities, since they depend on the nature of the target and incident particle, the type of interaction involved: EM, strong, weak, the center of mass energy...etc.

Measurement variables

Hadronic collisions are a hard scattering of a beam of quarks, antiquarks, gluons

• The total COM energy and momentum, $\sum E, \sum \vec{P}$ are unknown

 \blacksquare BUT, there is no momentum component transverse to the colliding beams, therefore, $\sum \mathbf{E_t} = 0$

- Kinematic variables used in collider physics are
 - The component of momentum transverse to the beam p_T .
 - The rapidity $y = 1/2 \ln(E + p_z)/E p_z$
 - When $m << p_t \Rightarrow y \approx \eta = -1/2 \ln \tan \theta/2$, pseudorapidity.

20 years after the discovery of b

Unanswered questions...

- Is the data wrong? different measurements, different experiments...
- Is this evidence for new physics?
 Supersymmetric particles?
- What is going on with the 70% of the cross-section that hasnt been measured?

Is this a *shape* or *normalization* problem?

THE THEORY

"I think you should be more explicit here in step two."

Strong Production of Quarks

Quantum Chromodynamics describes the theory of strong interactions:

Leading order diagrams: $O(c_s^2)$

NLO $\mathcal{O}(\alpha_s^3)$: Gluon splitting

NLO $\mathcal{O}(\alpha_s^3)$: Flavour excitation

• $\sigma(qar q o Qar Q)$ and $\sigma(gg o Qar Q)$ are calculable only when $lpha_s<1$

Quark/Gluon Confinement

BUT: There are complications with the theory predictions

- Quarks and gluons are "confined" within hadrons.
- The colliding quarks and gluons are in protons (anti-protons)
- The final state quarks "fragment" into baryons (qqq) or mesons $(q\bar{q})$

Predicting $p\bar{p}$ Cross-sections

NLO: Gluon splitting

NLO: Flavour excitation

Factorization theorem: factorize physical observable into a

calculable part and a non-calculable but universal piece:

$$\underbrace{\frac{d\sigma(p\bar{p}\to BX)}{dp_T(B)}}_{observed} = \underbrace{f^{p,\bar{p}}}_{Proton \ structure} \otimes \underbrace{\frac{d\sigma(qq/gg/qg\to bX)}{dp_T(b)}}_{NLO/NNLO \ QCD} \otimes \underbrace{D^{b\to B}}_{fragmentation}$$

Probing proton structure

$e/\mu/\nu$ used to probe *Proton Structure:*

An event from the HERA $e^-, p+$ collider

Modeling proton structure

Parton Density Functions (PDF)

Parton densities with uncertainties extracted from fits to the data

PDFs $(xf(x,Q^2))$ are universal global fits to data on proton structure that are independent of the measurement process.

Uncertainties on gluonic function

Evolution of PDFs

By 2004, recalculating the cross-section with updated PDFs increases theoretical value by almost 2X!

Fragmentation Functions

$$D^{measured}(x) = \underbrace{D^{perturbative}(x)}_{calculable(QCD)} \otimes \underbrace{D^{non-perturbative}(x)}_{non-calculable}$$

Measured Fragmentation Fncns.

E. Ben Haim et. al. hep-ph/0302157

Non-perturbative functions used must match perturbative assumptions

Theory updates...

- 2001: Direct measurement of b fragmentation at LEP.
- 2001: New theoretical method to extract non-pert. fragmentation funcn
- 2002: Updated PDFs

Theory Summary

- Agreement with the Run I b cross-section data for $p_T > 5.0$ GeV/c has greatly improved without the need to invoke exotic sources of excess b quarks. Most of the improvement is due to improved treatment of experimental inputs.
- <u>BUT:</u> There are different theoretical approaches, and new methods to extract the non-perturbative part of fragmentation function. Which is the correct approach?

Total cross-sections do not depend on the fragmentation model!

= powerful experimental test of QCD calculations and PDFs.

THE ACCELERATOR

"Particles, particles, particles."

The Tevatron

Tevatron Collider Overview

FermilabTevatron Accelerator With Main Injector

Tevatron Performance

- In 1985, Tevatron collider begins operating @ $\sqrt{s}=1.6$ TeV
- Pun I of the Tevatron collected collider data at $\sqrt{s}=1.8$ TeV from 1992-1995 with $\mathcal{L}^{typical}=1.6\times 10^{31}~\mathrm{[particles]~cm^{-2}s^{-1}}.$ $\sim 109~\mathrm{pb^{-1}}$ integrated luminosity was collected by each collider detector. Event rate = cross-section X luminosity

Run II: Summer 2001 - present. 2.5X more data already!

2500

2750

Store Number

THE DETECTOR

"But don't you see, Gershon - if the particle is too small and too short-lived to detect, we can't just take it on faith that you've discovered it."

The Collider Detector at Fermilab

Run II: 788 collaborators, 62 institutions, 12 countries

CDF Run II - Overview

Signals: $J/\psi \rightarrow \mu\mu$, displaced b vertices

Central Muon detector: Prop. chambers outside central calor. $\sim 5\pi$ interaction lengths.

96 layer Central Outer Tracker (COT):

$$\sigma(p_t)/p_t = 0.003p_t$$

Silicon vertex detector: 8 Layers of 3-D Silicon up to $|\eta|=2$, 700,000 readout channels, $\sigma(d_0)\sim 20\mu m$

The Silicon Vertex Detector

CDF Data Flow

Dataflow of CDF "Deadtimeless"
Trigger and DAQ

250 pb $^{-1}$ \Rightarrow 480TB on tape

L1 latency: Pipeline depth = L1 processing time $\sim 5\mu secs$. The SVXII detector is readout on L1 Accept.

L2 processing time: The Silicon Vertex Trigger is in L2 \Rightarrow readout of the Silicon takes place in $\sim 15\mu secs + \sim 15\mu secs SVT$ processing time

Data logging rate: sustained rate of 18MB/s (150-200 KB/event)

RUN II MEASUREMENT OF THE J/ψ AND b-HADRON INCLUSIVE CROSS-SECTIONS

Event Snapshot - $J/\psi \to \mu\mu$ event

Counting J/ψ s ($p_T=0$ to 20 GeV/c)

Transverse momentum resolution:

$$\delta(p_T)/p_T = 0.003p_T$$

A detector simulation is used to model the expected shape of the J/ψ signal.

Muon Trigger efficiency

Level 1 tracking efficiency

L1 muon trigger efficiency .vs. $1/p_T$

Inefficient near center of wire planes

After excluding inefficient region

- Level 1 single μ trigger efficiency at 1.5 GeV/c is 92%
- Plateau is at 98 % except for tracks passing within 1.5 cm of the center of the COT wire plane where spacers are located

Detector Acceptance

A detector simulation is used to estimate acceptance:

Transverse momentum

Rapidity

J/ψ Cross-sections - Run II

$$\frac{d\sigma(p\bar{p}\to J/\psi X)}{dp_T(J/\psi)} = \frac{\text{Number of } J/\psi}{\text{luminosity} \times \text{acceptance} \times \text{efficiency} \times \Delta p_T}$$

$$\sigma(p\bar{p} \to J/\psi X, p_T > 5, 8 GeV/c)$$
 vs $y(J/\psi)$

$$\sigma(p\overline{p} \to J/\psi X, |y(J/\psi)| < 0.6) = 4.08 \pm 0.02(stat)^{+0.60}_{-0.48}(syst) \mu b$$

Separate $H_b \to J/\psi X$ from Total

- The J/ψ inclusive cross-section includes contributions from
 - Direct production of J/ψ
 - Indirect production from decays of excited charmonium states such as $\psi(2S) \to J/\psi(1S)\pi^+\pi^-$
 - Decays of b-hadrons such as $B \to J/\psi X$

b-hadrons have long lifetimes $(au=1.56ps,c au=468\mu\mathrm{m}),$ $\Rightarrow J/\psi \to \mu\mu$ vertices from $H_b \to J/\psi X$ decays will be displaced from the primary interaction point.

Extracting the b-fraction

• A maximum likelihood fit to the flight path of the J/ψ in the $r-\phi$ plane, L_{xy} is used to extract the b-fraction.

 $1.25 < p_T < 1.5 \; {\rm GeV/c}, \, f_b = 9.7\%$

 $10 < p_T < 12 \text{ GeV/c}, f_b = 28\%$

CDF Run II Preliminary $5.0 < p_T(J/\psi) < 5.5$ GeV/c

Total Fit

Total Jy Contribution

Background

Background

L_{xv}(J/\psi)/p_T(J/\psi).M(J/\psi) μ m

b->J/Ψ X shape from MC template

Parameterized background

$d\sigma(p\bar{p} \to H_b X)/dp_T(J/\psi)$

Fraction of J/ψ s from H_b

$$d\sigma(p\bar{p}\to H_bX, H_b\to J/\psi X)/dp_T(J/\psi)$$

Theory: M.Cacciari, S. Frixione, M.L Mangano, P. Nason. G. Ridolfi (Dec, 2003)

Algorithm to extract $d\sigma/dp_T(H_b)$

• Count the observed number of b-hadrons in a given $p_T(H_b)$ bin

$$N_i^b = \sum_{j=1}^N w_{ij} N_j^{J/\psi}$$

 w_{ij} is the fraction of b events in the i^{th} $p_T(H_b)$ from the j^{th} $p_T(J/\psi)$ bin obtained from MC.

 Correct the observed number of b-hadrons for the kinematic acceptance

b-Production cross-section

Data: $\sigma = 29 \pm 6 \mu \text{b}$, THEORY: $\sigma = 27.5^{+11}_{-8.2} \mu \text{b}$ (CTEQ6M, $m_b = 4.75$, $\mu = \mu_0$)

Summary

Studies of heavy quark production are precision tests of QCD.

- NEW data in 2003:
 - In 2003, new measurements of the inclusive central J/ψ cross-sections and the inclusive central b cross-sections down to $p_T=0$ GeV/c have been carried out at CDF. These are the first measurements down to $p_T=0$ GeV/c at a hadron collider.
- Lots of theory advances since 1997:
 - New PDF fits to proton structure data.
 - ullet Improved theoretical description of b fragmentation.

Total inclusive b-hadron cross-sections are in reasonable agreement with theoretical predictions within uncertainties.

The role of $\sigma(p\bar{p} \to H_b X)$ in HEP

- Precision cross-section measurements are sensitive to new physics beyond the standard model.
- Charm and Beauty production dominates at hadron colliders and form huge backgrounds to Top and new physics searches which involve b quarks in the final state.

BACKUP

QUARKONIA PRODUCTION

Quarkonia = discovery. J/ψ signal at Brookhaven in 1974

Prompt Quarkonia Production

Quarkonia bound states are non-relativistic. NRQCD LO perturbative expansion is $\mathcal{O}(\alpha_s^3 v^0)$ as in the color singlet model (CSM) + higher order $\mathcal{O}(\alpha_s^3 v^4)$.

Fragmentation processes \times color octet matrix element dominate. CO matrix

elements extracted from fits to data - agree well with Run I data at high p_t .

Prompt J/ψ production (Run I) Prompt J/ψ production (Run II)

Back to Ys!

At lower p_t NRQCD non-fragmentation diagrams from other octet matrix elements are important, soft gluon effects cause rates to diverge.

No new theoretical predictions for low p_T quarkonium at $p\bar{p}$ yet. BUT:

resummation of color octet matrix elements possible by summer 2004.

Charmonium Polarization Mystery

BUT Inclusion of color octet in NRQCD leads to a prediction of increasing transverse polarization of charmonium at high p_t .

Method: Fit the production angle, $\cos\theta*$, distribution to MC distribution which is a mixture of transverse and longitudinal polarizations. Use lifetime fit method to separate prompt and $b \to J/\psi X$ $dN/d\cos\theta^* \propto (1+\alpha\cos^2\theta^*)$

Run II: Need more precise measurements

N.B. Accurate measurements needed to reduce systematic uncertainty on detector accep-

High p_T b-Jet Production

• b-jets include much of the quark fragmentation remnants \Rightarrow jet cross-sections have small dependence on fragmentation.

